Oxygenation Inhibits the Physiological Tissue-Protecting Mechanism and Thereby Exacerbates Acute Inflammatory Lung Injury
نویسندگان
چکیده
Acute respiratory distress syndrome (ARDS) usually requires symptomatic supportive therapy by intubation and mechanical ventilation with the supplemental use of high oxygen concentrations. Although oxygen therapy represents a life-saving measure, the recent discovery of a critical tissue-protecting mechanism predicts that administration of oxygen to ARDS patients with uncontrolled pulmonary inflammation also may have dangerous side effects. Oxygenation may weaken the local tissue hypoxia-driven and adenosine A2A receptor (A2AR)-mediated anti-inflammatory mechanism and thereby further exacerbate lung injury. Here we report experiments with wild-type and adenosine A2AR-deficient mice that confirm the predicted effects of oxygen. These results also suggest the possibility of iatrogenic exacerbation of acute lung injury upon oxygen administration due to the oxygenation-associated elimination of A2AR-mediated lung tissue-protecting pathway. We show that this potential complication of clinically widely used oxygenation procedures could be completely prevented by intratracheal injection of a selective A2AR agonist to compensate for the oxygenation-related loss of the lung tissue-protecting endogenous adenosine. The identification of a major iatrogenic complication of oxygen therapy in conditions of acute lung inflammation attracts attention to the need for clinical and epidemiological studies of ARDS patients who require oxygen therapy. It is proposed that oxygen therapy in patients with ARDS and other causes of lung inflammation should be combined with anti-inflammatory measures, e.g., with inhalative application of A2AR agonists. The reported observations may also answer the long-standing question as to why the lungs are the most susceptible to inflammatory injury and why lung failure usually precedes multiple organ failure.
منابع مشابه
Protective effect of S-nitrosoglutathione pretreatment on acute lung injury in septic rats
Objective(s): To investigate the protective effect of S-nitrosoglutathione (SNG) pretreatment on acute lung injury (ALI) in septic rats. Materials and Methods: We constructed a rat model of sepsis by cecal ligation and perforation (CLP), and randomly divided into Sham, CLP, and CLP+SNG (0.25 and 0.5 mg/kg) groups. We used H&E; staining an...
متن کاملDoes p-coumaric acid improve cardiac injury following LPS-induced lung inflammation through miRNA-146a activity?
Objective: In cardiovascular diseases, inflammatory response plays an important role and affects heart function. As a flavonoid compound, p-coumaric acid (pCA), commonly exists in many fruits and vegetables and has a therapeutic effect on inflammatory diseases due to its anti-inflammatory properties. The purpose of the present study was to investigate pCA anti-inflammatory effect and the miRNAs...
متن کاملEffects of pumpless extracorporeal lung assist on hemodynamics, gas exchange and inflammatory cascade response during experimental lung injury
Pumpless extracorporeal lung assist (pECLA) has been reported to efficiently remove the systemic CO2 production and provide mild to moderate oxygenation, thereby allowing for ventilator settings and modes prioritizing oxygenation and lung protection. However, an adequate bypass flow, the capacity to provide respiratory support and the effect on the inflammatory cascade response and tissue perfu...
متن کاملp-Coumaric acid protects cardiac function against lipopolysaccharide-induced acute lung injury by attenuation of oxidative stress
Objective(s): Acute lung injury (ALI) has a high mortality rate and is characterized by damage to pulmonary system giving rise to symptoms such as histological alteration, lung tissue edema and production of proinflammatory cytokine. p-Coumaric acid (p-CA), as a phenolic compound, that is found in many types of fruits and vegetables has been reported to exhibit a thera...
متن کاملاثر N-Acetylcystein در بیماران مبتلا به آسیب حاد ریوی تحت تهویه مکانیکی: مطالعه بر 50 بیمار
Background: Acute lung injury (ALI) is a pulmonary pathology occuring in context of infection, trauma, burn, and sepsis. Tissue injury and release of chemical mediators result in tissue damage and organ failure especially respiratory failure. Many therapeutic modalities including vitamin E, allopurinol, and N-acetylcystein (NAC) have been used to decrease levels of inflammatory factors and to c...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- PLoS Biology
دوره 3 شماره
صفحات -
تاریخ انتشار 2005